Estimates for Neuman–sándor Mean by Power Means and Their Relative Errors

نویسنده

  • ZHEN-HANG YANG
چکیده

For a,b > 0 with a = b , let NS (a,b) denote the Neuman-Sándor mean defined by NS (a,b) = a−b 2arcsinh a−b a+b and Ap (a,b) , Lp (a,b) denote the r -order power and Lehmer means. Based on our earlier worker [27], we prove that αpAp < NS < Ap and Ap < NS βpAp holds if and only if p 4/3 and p p0 , respectively, where αp = ( 21/p−1 ) / ln(1+ √ 2) if p ∈ [1/4/3,∞), βp = ⎪⎨ ⎪⎩ NS (1,x0)/Ap (1,x0) if p ∈ (1, p0], 21/p−1/ ln ( 1+ √ 2 ) if p ∈ (0,1], ∞ if p ∈ (−∞,0] are the best constants, here x0 is the unique root of the equation NS (1,x) = A(1,x)A2 (1,x) Lp0−1 (1,x) on (0,1) , and p → αpAp is decreasing on (0,∞) . Also, we have α4/3A4/3 < Ap0 < NS < A4/3 < α −1 4/3Ap0 . Our results clearly are generations of known ones. Mathematics subject classification (2010): 26E60, 26D05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Inequalities Involving Neuman–sándor and Logarithmic Means

Sharp bounds for the Neuman-Sándor mean and for the logarithmic mean are established. The bounding quantities are the one-parameter bivariate means called the p-means. In this paper best values of the parameters of the bounding means are obtained. Mathematics subject classification (2010): 26E60, 26D07, 26D20.

متن کامل

Neuman–sándor Mean, Asymptotic Expansions and Related Inequalities

The subject of this paper is a systematic study of inequalities of the form (1−μ)M1 +μM3 M2 (1−ν)M1 +νM3 which cover Neuman-Sándor mean and some classical means. Furthermore, following inequalities with optimal parameters were proved: μ 1 H(s,t) +(1−μ) 1 NS(s,t) 1 A(s,t) ν 1 H(s,t) +(1−ν) 1 NS(s,t)

متن کامل

Optimal Bounds for Neuman–sándor Mean in Terms of the Convex Combination of Logarithmic and Quadratic or Contra–harmonic Means

In this article, we present the least values α1 , α2 , and the greatest values β1 , β2 such that the double inequalities α1L(a,b)+(1−α1)Q(a,b) < M(a,b) < β1L(a,b)+(1−β1)Q(a,b) α2L(a,b)+(1−α2)C(a,b) < M(a,b) < β2L(a,b)+(1−β2)C(a,b) hold for all a,b > 0 with a = b , where L(a,b) , M(a,b) , Q(a,b) and C(a,b) are respectively the logarithmic, Neuman-Sándor, quadratic and contra-harmonic means of a ...

متن کامل

Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean

and Applied Analysis 3 If f(x)/g(x) is strictly monotone, then the monotonicity in the conclusion is also strict. Lemma 2. Let u, α ∈ (0, 1) and f u,α (x) = ux 2 − (1 − α) ( x arctanx − 1) . (12) Then f u,α (x) > 0 for all x ∈ (0, 1) if and only if u ≥ (1 − α)/3 andf u,α (x) < 0 for allx ∈ (0, 1) if and only if u ≤ (1−α)(4/π− 1). Proof. From (12), one has f u,α (0 + ) = 0, (13) f u,α (1 − ) = u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013